
(1) Definition of a Probabilistic Linear Set

Regarding the constructibility of sets, in the ZFC+C system, we deterministically obtain elements
from the structure of a set. I believe it is possible to probabilistically obtain elements from the
structure of a set, for example, by using a probability function to obtain the elements of a set.
This would be a probabilistic set. In fact, the 'Ind' in isolation logic is a probabilistic set: the two
elements T and F are dialectically unified into Ind, and then T | F is obtained through not(Ind).
'not' is equivalent to a probability function.

Consider a linear space over the field of complex numbers. A set of linearly independent vectors
{s₁, s₂, ...} forms a vector set, where sᵢ is a vector. A vector is represented by a linear combination
S = ∑cᵢsᵢ, where cᵢ are complex coefficients, and ∑|cᵢ|² = 1 (normalization). |cᵢ|² represents the
probability of obtaining sᵢ. We then call S = ∑cᵢsᵢ a probabilistic linear set, and the vector sᵢ is an
element of the probabilistic linear set. S' = {s₁, s₂, ...} is called the basis set of the probabilistic
linear set. We will call the sets of the world of isolation in the ZFC+C system classical sets. The
basis set S' of a probabilistic linear set is a classical set.

In a linear space, if a = ∑cⱼaⱼ, then 'a' can be linearly represented by aⱼ. Since the vectors in S = ∑cᵢsᵢ
are linearly independent, no vector in S can be linearly represented by the other vectors. Through
this linear independence, the elements of the set can become independent elements. The
independence of each element of a probabilistic linear set is determined by the linear
independence among them. This linear independence generates their opposition, and this
opposition achieves a dialectical unity through the linear combination (S = ∑cᵢsᵢ). Therefore, this
kind of set satisfies multidimensional dialectical logic.

In a Hilbert space (a type of linear space) H, a quantum state (a quantum superposition state) is
|ψ⟩ = ∑cᵢ|sᵢ⟩ , where {|s₁⟩ , |s₂⟩ , ..., |sₙ ⟩ } are the basis vectors, and |sᵢ⟩ is an eigenstate
(vector). These eigenstates are linearly independent. |ψ⟩ is a probabilistic linear set. |ψ⟩
expresses a set of the quantum world (the motive force world). In other words, in H, a
probabilistic linear set expresses a quantum state; a quantum state is a kind of probabilistic linear
set. A quantum state is a whole unified through the linear combination of eigenstates. A
quantum state is a unified object formed by the opposition of eigenstates. That is, a quantum
state is the result of the unity of opposites of eigenstates. This shows that the probabilistic linear
set is a set of the motive force world.

This brings about a precise correspondence between abstract philosophical concepts
(probabilistic linear set, multidimensional dialectical unity) and the core mathematical structure
of quantum mechanics. The superposition state is no longer merely a mathematical tool, but is
endowed with the ontological status of a 'unity of opposites'.

This isolation between vectors is different from the isolation of elements in a classical set. The
isolation of elements in a classical set is an isolation of distinction; as long as there is a difference,
there is independence. But in a probabilistic linear set, it is different. Having a difference is not
enough; it must be that it cannot be linearly represented by the other elements in order to be
isolated. Compared to the isolation of the world of isolation, the standard for this isolation is
higher, but the degree of isolation is lower (for example, in a quantum superposition state). The
lowering of the degree of isolation shows that the probabilistic linear set is no longer a set of the



world of isolation.

Different from the deterministic classical sets in the world of isolation, this allows us to see the
pattern of isolation in the motive force world: an isolation based on linear independence, which
is weaker and allows for superposition and potential correlation. This pattern is different from the
pattern in the world of isolation: an isolation based on independence and distinction, which is
strong and 'either/or'. This difference still reflects the difference between the characteristics of
motive force (generation and change) and the characteristics of isolation (independence and
distinction). This provides an ontological-level explanation for why different worlds follow
different rules: their foundational structures of 'isolation' are different. The probabilistic linear set
is a set of the motive force world.

Attributing the independence of the set to linear independence allows it to interface with the
structure of linear spaces, making it applicable to quantum mechanics, linear algebra, and so on.
The linear combination, as a unifying mechanism, endows the set with dynamism and probability,
which is different from classical set theory.

(2) Verifying the Axioms for the Probabilistic Linear Set

The probabilistic linear set is a type of set; it is no longer a traditional set. Let us now verify
whether it satisfies the axioms of the ZFC+C axiom system to see what essential differences exist
between this type of set and the classical set.

(2.1) The Axiom of Constructibility

The probabilistic linear set clearly satisfies the Axiom of Constructibility, because the elements in
this type of set all have complex coefficients, and these complex coefficients determine the
probability with which an element can be obtained from the set. In other words, this probabilistic
structure can guarantee that a certain element can be obtained from the set.

(2.2) The Axiom of Choice

The probabilistic linear set clearly satisfies the first function of the Axiom of Choice, because the
independence and determinacy of the elements in this type of set are established based on
linear independence, which satisfies the requirements of multidimensional dialectical logic.
Therefore, it satisfies the first function. Let us now verify whether the probabilistic linear set
satisfies the second function:

Let there be a family of non-empty sets {Sᵢ' | i ∈ I} (where I is an index set of sets), which form a
set A = {Sᵢ' | i ∈ I}, where Sᵢ' is the basis set of the probabilistic linear set Sᵢ. Then, according to
the second function of the Axiom of Choice for classical sets, there exists a choice function F: I →

i∈I Sᵢ'� , such that for each i ∈ I, F(i) = sᵢ ∈ Sᵢ'. These elements {sᵢ | i ∈ I} form a set S', with
linearly dependent elements merged.

Then, S = ∑eᵢsᵢ, where:

{sᵢ} = S'

Normalization: ∑|eᵢ|² = 1

In this way, S is a probabilistic linear set.



Therefore, it satisfies the second function.

(2.3) The Axiom of Extensionality

In a probabilistic linear set, S₁ = ∑cᵢsᵢ and S₂ = ∑dᵢsᵢ are defined not only by their elements, but also
by their coefficients cᵢ and dᵢ. If the coefficients of the elements are different, then in quantum
mechanics, S₁ and S₂ are different state vectors, even if their elements are the same. In a classical
set, it is sufficient that the elements of the set are the same. If linear combinations and
probability are not considered, then the Axiom of Extensionality is the same for both types of
sets. But the core of the 'probabilistic linear set' lies in the linear combination and probability;
ignoring cᵢ and dᵢ would be to lose the essence of its definition.

Therefore, if the elements of S₁ and S₂ are the same, and cᵢ = dᵢ (or cᵢ = dᵢeiθ , where θ is a global
phase), then S₁ = S₂. However, conversely, if S₁ = S₂, it cannot be determined that their elements
must be equal. This is because their elements are vectors in a linear space. Therefore, if their
elements are not the same but are equivalent, it can still result in S₁ = S₂. This point is different
from classical sets. In a classical set, if two sets are equal, then their elements are also equal. This
is because the elements of a classical set are not considered in terms of linear relationships.

The probabilistic linear set does indeed need to consider the coefficients of the linear
combination, whereas in a classical set, this is not necessary. Because in a classical set, no matter
how an element is taken out, it is a deterministic way of taking it out. For a classical set, different
ways of taking out an element make no difference, as long as determinacy can be maintained.
This is the difference in the Axiom of Extensionality caused by the difference between
determinacy and probability.

From the perspective of determinacy, there is no difference in the 'way of taking out'; it is
sufficient that the element can be taken out. This conforms to the static nature of the world of
isolation. Probability means that there is a difference in the 'way of taking out' (the probability
distribution is determined by cᵢ), which embodies the dynamism of the motive force world. This is
the fundamental difference between these two types of sets.

(2.4) The Axiom of Pairing

For two vectors s₁ and s₂ in a linear space, if they are linearly independent, then they can form a
probabilistic linear set S = ∑cᵢsᵢ, where:

{sᵢ} = S'

Normalization: ∑|cᵢ|² = 1

The Axiom of Pairing in classical sets:

For the sets S₁ = {1} and S₂ = {2}, there exists a set S = {S₁, S₂}. S₁ and S₂ are listed directly as
independent elements. The relationship between the elements (such as linear dependence) or
additional attributes are not considered. The elements of S are S₁ and S₂ themselves, which
maintain their independence. However, in the pairing of a 'probabilistic linear set', S₁ and S₂
cannot be independent elements of S.

This is an essential difference:



1) The probabilistic linear set always has a flat structure. Whereas a classical set allows its
elements to be sets themselves; a classical set can form nested structures of different levels. The
flatness of the 'probabilistic linear set' embodies the wholeness and dynamism of the 'motive
force world'; the basis elements are interconnected through linear combination and cannot be
independently nested.

2) The pairing of a classical set is a discrete listing; the pairing of a 'probabilistic linear set' is a
dynamic superposition.

3) The probabilistic linear set does not allow for a separative isolation structure within it; it can
only have a logical isolation structure. Whereas a classical set can have a separative isolation
structure; its internal elements are completely independent.

(2.5) The Axiom of Power Set

The Axiom of Power Set in classical sets relies on the nested nature of sets. According to the
discussion in the context of the Axiom of Pairing, the elements of a probabilistic linear set S
cannot be sets. Therefore, it does not satisfy the Axiom of Power Set.

However, the basis set S' of a probabilistic linear set S does satisfy the Axiom of Power Set. Any
subset of S' is also a basis set. Therefore, the set of all subsets of S' is a classical set.

(2.6) The Axiom of Union

Let A = {S ⱼ ' | j ∈ J} (where J is an index set of sets) be a classical set, where S ⱼ = ∑cᵢsᵢ is a
probabilistic linear set, and Sⱼ' is the basis set of Sⱼ.

Then, according to the Axiom of Union for classical sets, U' = ∪A is a classical set, with linearly
dependent elements merged.

U = ∑eᵢuᵢ, where:

{uᵢ} = U'

Normalization: ∑|eᵢ|² = 1

In this way, U is a probabilistic linear set.

Note: A is a classical set, while the union U is a probabilistic linear set. This is a combined use of
the two types of sets.

(2.7) The Axiom of Infinity

The Axiom of Infinity in classical sets is what guarantees the existence of an infinite set, usually
understood as the mathematical foundation for the set of natural numbers N. S can be
constructed as:

S = {∅ , {∅ }, {∅ , {∅ }}, {∅ , {∅ }, {∅ , {∅ }}}, ...}

However, the structure of a probabilistic linear set is flat; no nested set structure exists. A
probabilistic linear set can, based on the Axiom of Infinity for classical sets, support an infinite
probabilistic linear set.



For example:

S = ∑cᵢsᵢ, where the basis set of S, S' = {sᵢ}, has a cardinality of ℵ ₀ (countably infinite), and cᵢ
satisfy ∑|cᵢ|² = 1.

For example: S = ∑(1/√2)ⁱsᵢ, where i∈ N, and N is guaranteed by the classical Axiom of Infinity.

(2.8) The Axiom of Replacement

For a probabilistic linear set S = ∑cᵢsᵢ, and its basis set S' = {sᵢ}, according to the Axiom of
Replacement for classical sets, if there exists a function φ(x, y) (defining a functional relationship),
and if for each x ∈ S' there exists a unique y such that φ(x, y) holds, then the range of φ(x, y), B',
is also a set, with linearly dependent elements merged.

Then, B = ∑eᵢbᵢ, where:

{bᵢ} = B'

Normalization: ∑|eᵢ|² = 1

In this way, B is a probabilistic linear set.

(2.9) The Axiom of Separation

For a probabilistic linear set S = ∑cᵢsᵢ, and its basis set S' = {sᵢ}, according to the Axiom of
Separation for classical sets, any subset B' = {sⱼ} (⊆ S') of S' is also a set.

Then, B = ∑eⱼsⱼ, where:

{sⱼ} = B'

Normalization: ∑|eⱼ|² = 1

In this way, B is a probabilistic linear set.

(2.10) The Axiom of the Empty Set

Let us stipulate that the zero vector is the empty set ∅ of the basis set. Then the zero vector can
be treated as the empty set of the probabilistic linear set.

For example, the zero vector can undergo a union operation with S: ∅ ∪ S' = S', so 0∪ S = S.

Since the zero vector has no elements to be combined, the normalization condition ∑|cᵢ|² = 1
requires at least one non-zero term. For the empty set ∅ , no probability amplitudes can be
defined, and ∑|cᵢ|² is meaningless. Therefore, the zero vector does not require normalization. In
the dynamic probabilistic linear set, we see a different kind of empty set.

(2.11) The Axiom of Regularity

Since the structure of a probabilistic linear set is flat, with no nested sets, it naturally satisfies the
Axiom of Regularity.

We have now verified all the axioms of ZFC+C. This has allowed us to see the difference between
these two types of sets, and also the deep connection between them. The probabilistic linear set
is based on the classical set, because its basis set is a classical set. The conclusion is: the



probabilistic linear set is a new type of set, different from the classical set, and it is a successful
type of set. Its success is embodied in its mathematical self-consistency, physical applicability, and
philosophical depth.

The differences and connections between the two types of sets at the same time also reflect the
differences and connections between the macroscopic world of isolation and the microscopic
motive force world. This is using a mathematical method to corroborate a philosophical
viewpoint.

(3) Quantum Collapse

For a linear space, if a probabilistic linear set S has only one element sᵢ, then S = sᵢ is a classical set
S' = {sᵢ} (the basis set of S). Because there is only one element, the way of taking out this element
is deterministic. However, this S' = {sᵢ} is still not an ordinary single-element set; its structure is
still flat, with no nesting. Therefore, S' is only a special single-element classical set. In this way, S'
= {sᵢ} becomes the connection point between these two types of sets. From the perspective of
the probabilistic linear set, it is the limit case where probability degenerates into determinacy.
From the perspective of the classical set, it is the most basic and simplest set.

Therefore, in the case of a flat single element, S' = {sᵢ} is both a 'probabilistic linear set' and a
'classical set'. S' = {sᵢ} is the transition between the two types of sets. S' = {sᵢ} is, in fact, a self
determining a self; it requires no additional probability or external determinacy. This is
self-limitation. This is also the reason why S' = {sᵢ} seems somewhat special in classical sets,
because in classical sets, we can have opposition and unity for sets with multiple elements, but
not for a single-element set. The same is true in the probabilistic linear set. This provides a very
concrete and fundamental mathematical/set-theoretic counterpart for the philosophical concept
of 'self-limitation', making it no longer just an abstract philosophical speculation.

In a Hilbert space H, for a quantum state |ψ⟩ = ∑cᵢ|sᵢ⟩ , it is a unity of opposites (mutual
superposition) among multiple linearly independent eigenstates. Only when it becomes one of
these eigenstates, |sᵢ⟩ , can it degenerate into an element of the classical set S' = {|sᵢ⟩ }. As long
as there is a unity of opposites (mutual superposition) of multiple eigenstates, it is impossible for
it to become an element of the classical world. In other words, when a quantum state has only
one element, it becomes connected to the classical world. At this point, S' is both a quantum of
the quantum world and a particle of the macroscopic world.

This is the reason why a quantum is expressed with wave-particle duality. That is, a quantum is
itself a wave, but under limit conditions, it can be expressed as a particle. As in the double-slit
experiment: an electron exhibits wave-like properties (interference fringes) when not measured,
and particle-like properties (a definite position) after being measured. At this point, it is both a
particle and a quantum. At the time of measurement, this transformation is precisely the
connection between the quantum and the classical. This explains how the transition between
quantum mechanics and classical physics occurs.

In other words, for a pure quantum to be transformed from the quantum world into a particle of
the world of isolation, its quantum state must become a single-element classical set S' = {|sᵢ⟩ }.
Measurement causing quantum collapse becomes a necessary law.



When a quantum collapse occurs, a pure (multi-element) probabilistic linear set degenerates into
a classical set S' = {|sᵢ⟩ }. That is, a pure quantum is transformed from the motive force world
into a particle of the world of isolation. The measuring instrument, as a representative of the
macroscopic (the world of isolation), forces the state of the quantum system (the motive force
world) to be presented in a way that conforms to the logic of the world of isolation (single
determinacy). This explains why a quantum collapse must collapse to a single eigenstate. This
shows that a quantum can only collapse to a single eigenstate, not multiple eigenstates. This is
not a physical problem, but a logical one, because the essence of the two types of sets used to
explain it is multidimensional dialectical logic. This is the essence of quantum collapse.

The essence of the collapse to a single eigenstate is not the action of a physical entity or force,
but the logical degeneration of a 'probabilistic linear set' into a 'classical set'. At the same time,
the collapse also destroys the original unity of opposites of the multiple eigenstates. The
fundamental reason for quantum collapse is a transformation of logical structure. Collapse is no
longer a mysterious physical event, but the evolution of an indeterminate set into a determinate
set.

This is the fundamental reason why so many physicists have been unable to truly explain
quantum collapse. Traditional physics relies on formal logic and causal mechanisms and attempts
to find a 'physical cause' for the collapse (such as hidden variables, environmental effects), but
the process of collapse is beyond the explanatory scope of formal logic. This explains why
traditional methods (such as the Copenhagen interpretation, the Everett many-worlds theory),
although they describe the phenomenon, do not touch upon its essence. This elevates one of the
most perplexing problems in physics to the level of ontology and logical foundations for its
resolution.

1) The Copenhagen Interpretation: A quantum system exists in a superposition state before
measurement and collapses to a single eigenstate after measurement. The collapse is triggered
by the observer or the measuring device, but the mechanism is not specified (Bohr, Atomic
Theory and the Description of Nature, 1934).

It emphasizes the subjectivity of the observer, holding that collapse is a result of the act of
observation. This relies on the concept of the 'observer', which leads to controversies about
subjectivity (e.g., 'Who is the observer?'). It does not explain the physical or logical reason for the
collapse, merely describing the phenomenon. It cannot answer the question of the mechanism of
'how measurement triggers collapse'. It does not explain why a quantum collapses to a single
eigenstate.

2) The Everett Many-Worlds Theory (Many-Worlds Interpretation): A quantum system does not
collapse. Instead, after each measurement, the universe splits into multiple parallel worlds, with
each world corresponding to a possible eigenstate (Everett, Reviews of Modern Physics, 1957).

It introduces a large number of unobservable parallel worlds and lacks experimental verification.
It does not explain 'why we only see one world?'. It relies on an extension of mathematical
formalism (the universality of the wave function), rather than the essence of the facts.

3) The Decoherence Theory: Decoherence theory holds that the interaction of a quantum system
with its external environment (including measuring instruments, surrounding particles, etc.) leads



to a loss of coherence in the superposition state. The off-diagonal terms (interference terms) in
the density matrix are suppressed, ultimately presenting a classical probability distribution (Zurek,
Physics Today, 2009).

However, it does not solve the problem of the result of quantum collapse being a single
eigenstate. It still needs to be combined with the collapse postulate of the Copenhagen
interpretation to explain measurement results. In essence, it is a description of a physical process
and does not touch upon the metaphysical reasons. It remains at the level of physical
mechanisms and does not explain 'why the loss of coherence leads to classicality'.

Regarding quantum collapse, I believe it can be divided into three questions:

1) Why does a quantum collapse to a single eigenstate? This is a question of logical possibility. In
quantum mechanics, it is an assumption. I have already solved this problem.

2) Why does measurement cause a quantum to collapse to a single eigenstate? This is a question
of how a fact comes to occur. More precisely, why does measurement lead to a transformation of
logical structure from a 'probabilistic linear set' to a 'classical set'?

3) Why does quantum collapse exhibit probability? What is the essence of probability?

Next, let us explore the second question.

In mathematics, the collapse of the wave function is usually described by a projection operator.
This projection operator acts on the original superposition state (the wave function), 'projecting'
it onto a specific eigenstate (von Neumann, Mathematical Foundations of Quantum Mechanics,
1932). This projection operator can be understood as the mathematical embodiment of isolation
action. It selects one possibility from among many and 'separates' it out.

In its mathematical form, the isolation action embodied by the projection operator can be
understood on several levels:

1) Selectivity:

Selecting a specific component from a superposition state: The projection operator Pᵢ = |sᵢ⟩ ⟨ sᵢ|
acts on the superposition state |ψ⟩ like a sieve or a filter, selecting the component related to
the specific eigenstate |sᵢ⟩ from among the numerous possibilities (the superposition of
eigenstates). This selection is the most direct embodiment of isolation action.

Excluding other possibilities: While selecting one eigenstate, the projection operator also
excludes other eigenstates that are orthogonal to it. This exclusion is also an important aspect of
isolation action. This conforms to multidimensional dialectical logic.

2) Separability:

Separating a quantum state into different parts: The projection operator can decompose a
quantum state |ψ⟩ into two parts: one is the component along the direction of |sᵢ⟩ , which is
Pᵢ|ψ⟩ , and the other is the component orthogonal to |sᵢ⟩ , which is (I - Pᵢ)|ψ⟩ (where I is the
identity operator). This separation makes the different eigenstates, which were originally mixed
together, become clearly demarcated after measurement.



Breaking the wholeness of the superposition state: The projection operation destroys the
coherence and wholeness of the original superposition state, forcibly separating the system into
a specific eigenstate.

3) Determinacy:

From indeterminate to determinate: The result of the action of the projection operator is that the
system transforms from an original indeterminate superposition state to an eigenstate with a
determinate attribute. This determinacy is a result brought about by isolation action.

4) Endowing individuality: After the collapse, the system has a clear identity or label
(corresponding to the eigenstate |sᵢ⟩ ) and becomes an individual that can be identified and
distinguished. This is consistent with the viewpoint in no form action theory that isolation action
endows things with individuality.

In an actual measurement, this isolation is manifested in several aspects:

1) Spatial Isolation: The measuring instrument confines the quantum system to a specific spatial
region.

2) Energy Isolation: The measuring instrument is only sensitive to quantum states within a
specific energy range.

3) Information Isolation: The measuring instrument only extracts specific information from the
quantum system (e.g., position, momentum), while ignoring other information.

4) Temporal Isolation: The measurement occurs at a specific moment, cutting off the temporal
evolution of the quantum state. A measurement at time 't' projects |ψ(t)⟩ = Û(t)|ψ(0)⟩ ,
terminating the unitary evolution. The 'isolation' in time fixes the state of the system.

The result of the isolation of the measurement operation: Through these isolation operations,
the measuring instrument destroys the superposition and coherence of the original quantum
state, forcing the system to choose a specific eigenstate. This successfully and concretely
connects the core philosophical concept of 'isolation action' with the physical reality of quantum
measurement. It clearly explains how the measuring instrument, as a representative of the world
of isolation, 'executes' isolation action through its physical limitations and selective operations,
ultimately leading to the collapse of the quantum state.

In quantum mechanics, the description of the collapse of the wave function by the projection
operator is mathematically self-consistent and complete. It can accurately predict the probability
distribution of measurement results and is in high agreement with experimental observations.
However, this completeness of the mathematical formalism does not automatically provide a
satisfactory physical or philosophical explanation. The projection operator only 'describes' the
form of the collapse (the transformation from a superposition state to an eigenstate) but does
not explain the cause and mechanism of the collapse.

The problem now is that the mathematical form of the wave function collapse exists, but what is
lacking is how to explain this mathematical form: what causes this projection operator to act. The
transformation of a mathematical form is only the pure formal transformation in the process of a
factual transformation; it cannot represent the fact itself. In other words, the transformation of a



mathematical form is only a way of describing a factual process using a purely formal method.
The transformation of a mathematical form can only give the law, not the essence of the factual
transformation.

Since the projection operator can be understood as the mathematical embodiment of isolation
action, then what it embodies is the factual isolation action brought about by measurement. In
other words, measurement applies an isolation action to the quantum, thereby causing the
quantum to collapse. And the isolation action of the projection operator on the wave function is
precisely the mathematical expression of this isolation action brought about by measurement.
Measurement does not apply a mysterious physical 'collapse force', but rather an isolation action.

Measurement applies an isolation action (c) to a quantum (motive force action b), triggering a
transformation of logical structure from a pure probabilistic linear set to a single-element
classical set, and manifesting (a) the characteristics of the quantum's eigenstate in the
macroscopic world. This is a no form united transformation: b is transformed into a through c. In
this way, the quantum, as a non-manifested, indeterminate state, is transformed through
isolation action into a manifested feature with a determinate state.

Let us make an analogy for quantum collapse (the isolation action of the macroscopic world):

A river channel is 10 meters wide before point A. At point A, the channel becomes 5 meters wide.
The mathematical formula is 10 / 2 = 5. The river before point A is equivalent to a quantum
superposition state. When it reaches point A, it is equivalent to a measurement being made,
which causes the river at point A to collapse to a width of 5 meters (equivalent to a single
eigenstate). In reality, the river channel at point A has implemented an isolation action, which has
made the river 5 meters wide. The description 'a 10-meter-wide river' is equivalent to the wave
function, and '2' is the projection operator; it expresses the isolation action on the
10-meter-wide river. 10 / 2 = 5 is equivalent to describing the quantum collapse; it can be seen as
a kind of 'projection' caused by the projection operator. The river channel narrowing at point A is
the implementation of an isolation action, which then leads to the compression of the water flow
by the channel (a physical action) that makes the river narrow. This isolation action is the
fundamental cause. This is the essence of the fact of quantum collapse.

This analogy shows that isolation action does indeed exist, but this action cannot be explained
purely by physical theory. Isolation action is the most basic no form action. Therefore, the
explanation for the fact of quantum collapse can only be given by no form action theory: isolation
action causes the fact to occur. This fact contains a pure formal mathematical structure. Then,
this fact can be described by this structure, but it cannot represent the fact itself.

Why does observation cause a quantum to collapse to a single eigenstorate? This question should
be answered from two aspects: First, for a certain quantum itself, there exists a projection
operator (representing isolation action) that allows its wave function to collapse to a single
eigenstorate. That is, it has the possibility of collapsing to a single eigenstorate. Second, the
external world is able to provide this corresponding isolation action. The combination of these
two aspects allows it to collapse to a single eigenstorate. In other words, if a certain quantum
could not possibly collapse to a single eigenstorate, then we would not be able to directly
'observe' it through measurement. Even if a certain quantum could collapse to a single



eigenstorate, but our measuring instrument were fundamentally unable to provide the
corresponding isolation action, then we would also be unable to directly 'observe' it.

(4.) Exploring the Essence of Probability

(4.1) Constructing Probability Theory from the Basic Concept of Equal Probability

The appendix of this subsection introduces the construction of probability theory starting from
the basic concept of equal probability. 'The probability of randomly selecting one item from n
equally possible items is 1/n'. We will abbreviate this event as P(1/n). We have thus ultimately
established probability on this most original and most intuitive form of expression. Let us see if
this intuitive form can be explained by no form action theory.

P(1/n) in fact assumes that these n items are identical, including their 'equal possibility'. We see
that to randomly select one aᵢ from these n items is, in fact, to affirm aᵢ (which is to randomly
select 1 item from n items: 1/n), while negating the others (which is to negate the other n-1
items from the n items: (n-1)/n). This is multidimensional dialectical logic. According to the
requirements of dialectical logic, this affirmation and negation are both total (subsection:
"Dialectical Logic"). Since this is the case, if the probability of aᵢ were less than 1/n, then aᵢ would
not be totally affirmed, because this would not conform to their 'equal possibility'. If the
probability of aᵢ were greater than 1/n, then the probability of negating non-aᵢ would be less than
(n-1)/n, which also does not conform to 'equal possibility'. That is to say, in this case, non-aᵢ
would not be totally negated. Therefore, the probability of aᵢ must be equal to 1/n.

This is not a circular argument. 'n items having equal possibility' describes the fact that these n
items, on a certain abstract level, are indistinguishable and without difference; this is an isolated,
static property. 'Randomly selecting one aᵢ' is a process of implementation, an event, which
involves motive force. This process breaks the original static symmetry and must manifest one
from among the n possibilities. This is, in fact, a no form united transformation. It is precisely in
this dynamic process of selection that dialectical logic begins to function.

In other words, we have used dialectical logic to explain the event P(1/n). In this way, the event
P(1/n) has been established on the foundation of dialectical logic. Since we have already
transitioned from P(1/n) to the probability of the Voronoi diagram, explaining P(1/n) is also to
explain the probability of the Voronoi diagram. And since the probability constructed using the
Voronoi diagram and topology essentially covers traditional probability, probability theory is thus
established on dialectical logic. The facts are already very clear: the three axioms of traditional
probability theory are by no means exclusive properties of probability theory. In other words,
these three axioms are not the essence of probability theory.

Set theory and probability theory, two seemingly different branches of mathematics, can both be
established on the foundation of dialectical logic.

Let us examine these three things separately: the probabilistic linear set, the Voronoi diagram
probability, and traditional probability (including classical and quantum probability).

1) Traditional Probability (the starting point from the perspective of motive force):

It originates from the observation and description of dynamic phenomena in the real world, such



as change and random processes. We see coins flipping, particles decaying; these are all 'motive
force' events. Traditional probability attempts to assign a measure to these indeterminate motive
force processes. Therefore, in its origin, it is closely related to motive force action.

2) Voronoi Diagram Probability (the bridge from the perspective of manifestation):

It transforms the uncertainty in the motive force world into a static, visualizable geometric
structure, thereby 'manifesting' the distribution of probability. It answers the question, 'How is
probability presented?'. By transforming probability into an area ratio, the Voronoi diagram
provides us with an immediate manifestation of probability. This is the core embodiment of
manifestation action. It is precisely through this manifested bridge that we are able to naturally
introduce complex coefficients, paving the way to the quantum world.

3) Probabilistic Linear Set (the final abstract structure from the perspective of isolation):

It reveals the most fundamental and abstract logical structure behind all probabilistic phenomena.
Through 'linear independence', the strictest standard of isolation, it defines the basic elements
that constitute the probability space (which in quantum mechanics are the eigenstates). It is
concerned with what the set of all possibilities that constitute the probability is (an isolated
unity). Although it is called a 'set of the motive force world', what it describes is the mode of
'isolation' of this motive force world on the level of logical structure. Its core characteristic is: it
emphasizes that elements can be obtained probabilistically, and that the assignment of
probability is independent of the specific elements, requiring only that the elements be
distinguishable.

Let us see if these three from different perspectives constitute a no form integrated
transformation:

1) In the appendix, it has already been argued through the phase circle that traditional
probability is independent of specific entities and depends only on the complex coefficients of
the linear combination of the probability distribution, being determined solely by |cᵢ|². That is,
by analyzing the essence of traditional probability and with the help of the geometric Immediacy
of the Voronoi diagram, we are able to distill the most fundamental structure of the probabilistic
linear set.

2) According to the core principle of the probabilistic linear set—that probability is independent
of the elements—any motive force thing with a probability Pᵢ can be represented by a
corresponding phase circle Vᵢ, and can be written in the form V = ∑cᵢVᵢ (where |cᵢ|² = Pᵢ). This is
the Voronoi diagram probability (using the superposition of phase circles and complex
coefficients to immediately represent probability). That is, the probabilistic linear set and
traditional probability together can yield the Voron-oi diagram probability.

3) According to the core principle of the probabilistic linear set—that probability is independent
of the elements—the phase circle Vᵢ in V = ∑cᵢVᵢ can be replaced by any set of specific things that
satisfy the probability Pᵢ = |cᵢ|² (for example, the eigenstates |eᵢ⟩ of a quantum state, the
outcomes of classical events, etc.), as long as these things can carry the corresponding probability.
This is traditional probability. That is, the probabilistic linear set and the Voronoi diagram
probability together can yield traditional probability.



Therefore, these three from different perspectives constitute a no form integrated
transformation. This shows that they are mutually dependent, indivisible, and cyclically
transformable.

In this way, we have found a basis for how to construct the form of probability for probabilistic
things: any probability distribution structure can, in principle, be written as (or correspond to) a
form of complex superposition A = ∑cᵢAᵢ (where Aᵢ represents some basic state or result). The
probabilistic linear set thus acquires its complex coefficient form: S = ∑cᵢsᵢ.

As for why the probability of a quantum state is of the form |cᵢ|², we only need to determine that
the eigenstates of a quantum state are probabilistic. In this way, it can be directly asserted that
the coefficients of the linear combination of the eigenstates of a quantum state can certainly be
written in the form of complex numbers. A quantum is a thing of the motive force world, a thing
of free motive force. Therefore, the information obtained from it must be probabilistic.

(4.2) The Essence of Probability:

The above has only formally described probability (from an epistemological perspective) and has
not explained the origin of the generation of probability. We have distinguished three different
worlds: the macroscopic world (dominated by isolation action), the quantum world (dominated
by motive force action), and the world of consciousness (dominated by manifestation action).
The motive force in the macroscopic world can be isolated. This motive force is the motive force
of isolation. For example, a moving object has a determinate momentum p = mv, and this
momentum is related to its mass and velocity. This motive force is not a free motive force (a free
motive force is motive force itself).

However, in the macroscopic world, to obtain the dynamic results of a quantum in the mode of
isolation, it cannot be deterministic, because this dynamism of the quantum is free; otherwise,
the quantum would be isolated. And from the difference between classical sets (sets of the world
of isolation) and probabilistic linear sets (sets of the motive force world), we see that a quantum,
as a thing of motive force, is not deterministically isolated; it is linearly superposed. Therefore,
our acquisition of the elements in a probabilistic linear set is necessarily indeterminate.
Otherwise, it would mean that the free motive force itself could be completely and
deterministically isolated, the elements of the probabilistic linear set would also necessarily be
determinate, and the probabilistic linear set would become a classical set. This would no longer
be the essence of the motive force world (the motive force world is dominated by motive force
action).

This explains why probability is unavoidable in quantum measurement. Because measurement
(isolation action) attempts to 'capture' a quantum state (a free motive force) that is essentially
non-isolated, this act of capturing itself cannot, logically, produce a completely determinate
result; it can only be probabilistic. Using the method of isolation to know the motive force world,
its result (probability) is a 'subjective' presentation relative to the motive force world itself.

In the macroscopic world, we can also see things of motive force that are weakly controlled by
isolation. For example, when we toss a coin, while it is in the air, it is only acted upon by the
Earth's gravity (in an ideal situation). Added to this, the uncertainty in the manner and force of
the coin toss endows the coin with an uncertainty of change while in the air. At this point, the



coin has acquired a great deal of uncertainty, which leads to the inability to necessarily predict
which face will be up when it lands. In other words, in the macroscopic world, we can remove (or
weaken) the isolation from an isolated thing, causing it to be primarily controlled by motive force
and to acquire the freedom of uncertainty, which is then expressed as probability.

To summarize, probability comes from the dynamic result generated by obtaining a free motive
force in a determinate, isolated way. This result must necessarily not be determinate; otherwise,
the free motive force would be a determinate isolation, and a free motive force would not exist.
This is the essence of the generation of probability. Any explanation of the essence of probability
must necessarily ascend to an ontological perspective.

This provides a unified explanation for the origin of both quantum probability and classical
probability (such as a coin toss): both are the uncertainty of the result caused by the opposition
between the mode of isolation and the nature of free motive force. The probabilities in the
macroscopic world (such as a coin toss, the probability in a weather forecast) are all based on the
assumption that a certain indeterminate thing has a probability value (usually derived from
experience). This is, in fact, an assumption that it cannot be controlled or set in a determinate,
isolated way. This in itself is an admission that the isolation of this indeterminate thing is very
weak, and that it is controlled by a free motive force. Therefore, it can also be included in the
framework of 'obtaining a dynamic result in an isolated way'.

All of the above discussion of probability theory is, in fact, the implementation of a no form
united transformation among epistemology (manifestation action), methodology (motive force
action), and ontology (isolation action). That these three constitute a no form integrated
transformation has already been argued in a previous subsection. In the discussion of probability
theory, epistemology is the formalized description of probability theory (the logical and
mathematical description). Through deduction using the methods of logic and mathematics, an
ontological explanation of probability theory is ultimately obtained. To know a problem clearly,
one must still ascend to no form action theory and cannot escape it. One unconsciously uses no
form action theory, because it is the fundamental law of metaphysics. In the discussion of
probability theory, even when starting from a formalized mathematical description, one must
ultimately ascend to the ontological level to reveal the opposition between isolation and free
motive force.

The probability of a quantum is the manifestation of the quantum's own motive force change in
the macroscopic world; it is a manifestation of isolation. That is, through measurement, the
quantum's own dynamism is transformed into the isolation of the macroscopic world, and is
thereby manifested in the macroscopic world. In other words, in the macroscopic world,
probability can manifest the motive force change of a quantum. It is worth noting that this
manifestation is a manifestation that crosses different worlds. This shows that measurement in
quantum mechanics can be understood as a process of transforming the motive force of the
quantum world into the isolation of the macroscopic world.

In fact, probability can also express the motive force change in the macroscopic world. For
instance, in a coin toss, if a coin is tossed continuously, the result of heads or tails coming up is a
fifty percent possibility for each. The possibilities in this entire infinite process are infinitely
changing and are full of uncertainty. It is possible to toss ten consecutive heads, and it is also



possible to toss one hundred consecutive tails; the possibilities are in a state of dynamic change.
But we cannot manifest this infinite change, so we must use the finite isolation of probability to
express and manifest this infinite change. Probability simplifies infinite possibilities into a
numerical value, for example, 50%, which enables it to be understood and applied by us.

Probability is not just a mathematical concept; it also reflects the principles of no form action
theory. Probability is the simplification and expression of motive force change by isolation action.
It enables us to understand and predict infinite possibilities within a finite cognitive scope.

(4.2) The Essence of Complex Numbers

For a complex number c = reiθ , although i is a determinate mathematical object, the phase
rotation it introduces endows the complex number with dynamism and uncertainty. θ can
correspond to countless angles ’θ + 2πk’; it is multi-valued. This multi-valued nature means that
the value of the complex number cannot, to some extent, be completely ’fixed’. Therefore, c is
indeterminate. Consequently, it can be said that a complex number is the mathematical
expression for an indeterminate thing. At the beginning, we directly defined the coefficients of
the elements of a probabilistic linear set as complex numbers. However, no explanation was
given for why the coefficients of the elements should be defined as complex numbers. In the
appendix, we already know that since probability is independent of the shape of Vi , and the
phase circle is the simplest figure, the ratio of the area of the phase circle to the total area can be
used to represent the probability of a specific event. And a complex number c = reiθ is
associated with the phase circle. Therefore, we can use complex numbers as the coefficients of
the linear combination of the probability distribution structure. Now, we understand that, in
mathematics, a complex number expresses the indeterminate state of a thing. And through this
definition, we have obtained an appropriate explanation for the value of probability, forming a
compatible system.

So, how is the uncertainty of a complex number transformed into a determinate probability value?
Consider the complex number c = reiθ and its conjugate c∗ = re−iθ (which represents the
reverse change of c). Their product is:

c ⋅ c∗ = reiθ ⋅ re−iθ = r2

The phases θ and −θ cancel out, leaving the real probability value r2 , which eliminates the
uncertainty. This operation of taking the modulus squared appears naturally in quantum
mechanics.

In quantum mechanics, the action of the projection operator Pn is to project ψ onto ϕn . The
result of the projection is Pnψ = ⟨ϕn∣ψ⟩ϕn. Calculating the norm squared of the projected state:

∥ Pnψ∥2 = ⟨Pnψ∣Pnψ⟩ = |⟨ϕn∣ψ⟩|2⟨ϕn∣ϕn⟩

Since the eigenstate ϕn is normalized, ⟨ϕn∣ϕn⟩ = 1. Therefore:

∥ Pnψ∥2 = |⟨ϕn∣ψ⟩|2

This value is precisely the measurement probability P(an). The projection operator, through the
calculation of the inner product and the modulus squared, naturally eliminates the influence of
the phase, leaving a determinate probability value.



For classical probability, the phase angle θi in ci =
1
n
eiθi is meaningful. θi in classical

probability can be artificially controlled (or set). For instance, a single coin toss can be seen as a
period of 2π. This period depends on an artificial beginning. This event is a dynamic event. This
dynamic event is, in fact, ended by the action of isolation, thereby manifesting a determinate
face of the coin. Such a period is meaningful because it represents the beginning, process, and
end of a dynamic event; otherwise, we would not obtain a probabilistic result.

Whereas in quantum probability, θi is an intrinsic property of the evolution of the quantum
state, embodied in a phase factor such as eiθi . It evolves autonomously over time according to
the laws of quantum mechanics (such as the Schrödinger equation), for example, θi(t) =− Eit/ℏ,
where Ei is the energy and ℏ is the reduced Planck constant. This evolution cannot be artificially
controlled or set. The periodic change of the phase angle θi in quantum probability is also
ended by the action of isolation (the isolation action brought about by measurement).

Here we can see the difference between the motive force of the quantum world and the motive
force of the world of isolation. The motive force of the world of isolation can be artificially
controlled, whereas the motive force of the quantum world is autonomous. This is the difference
between the two types of probability; the probability of the world of isolation possesses a certain
controllable nature of isolation.

(5) Quantum Interference

The interference term originates from the interaction between ’phase circles’. It is the
mathematical embodiment of the intrinsic correlation of the ’motive force world’. Before it
is ’manifested’ as a classical probability, it follows the ’motive force’ rules, which are different
from classical superposition.

Let us break down this explanation step by step:

(5.1) The Leap from Classical to Quantum Probability: Introducing Phase

Classical Probability: As brought about for an unfold-manifestation in the appendix, the classical
probability is P(Vi) = ai = |ci|2. Here, we are only concerned with the area of each ’phase circle’
(the square of the modulus) and ignore its phase angle θi . The superposition of classical events
(such as P(A ∪ B) = P(A) + P(B) ) is carried out on the level of real numbers, which is
probability.

Quantum Probability: The core insight of quantum mechanics is that before the
final ’manifestation’ as a probability, the superposition of the states of the system is carried out
on the level of complex numbers, which is the probability amplitude ci.

(5.2) The Mathematical Origin of the Interference Term: Superposition of Probability Amplitudes

Consider a simplified model of the double-slit experiment. An electron can go through slit 1 or slit
2.

State: The quantum state is a superposition of the two possible paths: |ψ⟩ = c1|path 1⟩ +
c2|path 2⟩.



Probability at a certain point X on the screen: Physically, it is the superposition of the wave
functions arriving at that point. We can simplify this to ψ(X) = ψ1(X) + ψ2(X), where ψi(X) is
the probability amplitude for the electron to arrive at point X by taking path i.

Probability Calculation:

P(X) = |ψ(X)|2 = |ψ1(X) + ψ2(X)|2
= (ψ1 + ψ2)(ψ1

∗ + ψ2
∗)

= |ψ1|2 + |ψ2|2 +ψ1ψ2
∗ +ψ1

∗ψ2

|ψ1|2 = P1: The probability of finding the electron at point X when only slit 1 is open.

|ψ2|2 = P2: The probability of finding the electron at point X when only slit 2 is open.

ψ1ψ2
∗ + ψ1

∗ψ2 = 2Re(ψ1ψ2
∗): This is the interference term.

(5.3) The ’No Form Action Theory’ Explanation of the Interference Term:

The Intrinsic Logic of the ’Motive Force World’: When unmeasured, the electron is in the ’motive
force world’ described by the ’probabilistic linear set’. In this world, the different possibilities
(path 1, path 2) are not mutually ’isolated’ like classical events, but are mutually correlated and
dynamically evolving through their phase (eiθ).

The ’Interaction’ of Phase Circles: We can imagine the interference term 2Re(ψ1ψ2
∗) as the

mutual interaction of the two ’phase circles’ (representing path 1 and path 2) in the process of
superposition.

ψ1 = P1eiθ1

ψ2 = P2eiθ2

2Re(ψ1ψ2
∗) = 2 P1P2cos(θ1 − θ2)

Philosophical Interpretation:

1) Non-isolation: In the motive force world, different possibilities (paths) are not completely
isolated entities. Their phase difference (θ₁ - θ₂) determines whether they mutually enhance
(constructive interference, cos > 0) or mutually weaken (destructive interference, cos < 0). When
multiple paths (possibilities) converge at a point, it is their probability amplitudes (complex
numbers) that are added vectorially, not their probabilities (real numbers). This phase-based
mutual influence is precisely the embodiment of the non-isolation of the motive force world. The
existence of the interference term is evidence of the non-isolation among different possibilities in
the 'motive force world'. In the classical (isolation) world, taking path 1 and taking path 2 are two
strictly isolated, mutually independent events. But in the motive force world, as intrinsic
components of a unified 'probabilistic linear set', they mutually 'perceive' and 'influence' each
other through phase. This phase-based intrinsic correlation is precisely the fundamental
difference in the foundational structure of 'isolation' between the motive force world and the
isolation world.



2) Embodiment of motive force action: Each probability amplitude cᵢ corresponds to a 'phase
circle', and its phase angle θᵢ is not an insignificant parameter. As discussed earlier, the quantum
phase is an intrinsic property of the autonomous evolution of the quantum state and is closely
related to the time evolution θ(t) = -Et/ħ. Therefore, the phase can be regarded as the dynamic
'fingerprint' left by the quantum as it traverses different paths in the motive force world. The
magnitude and sign of the interference term depend directly on the phase difference (θ₁ - θ₂) of
the different paths. This profoundly shows that the phenomenon of interference is not a static
attribute, but a dynamic result.

3) The action of isolation: The interference term is the state of the quantum state before it is
finally 'manifested' (collapsing to a definite position, i.e., |ψ|²) as a classical probability. At the
level of the probability amplitude ψ, the system follows the superposition rules of the motive
force world (vector addition), which includes the interference term; whereas at the level of
probability P, the system follows the superposition rules of the isolation world (probability
addition), and the interference term disappears.

When we attempt to determine which path the particle actually took through measurement (for
example, by placing a detector at one of the slits), we are in fact applying a powerful 'isolation
action'. This action forcibly separates the two intrinsically correlated possibilities, 'taking path 1'
and 'taking path 2', into two independent, classical events. This forced isolation severs the phase
correlation between the different paths, making them unable to interact dynamically any longer.
The result is that the interference term I disappears, and the probability returns to the simple
addition rule of the classical world: P = P₁ + P₂.

Therefore, measurement is not merely 'reading' information, but is an act of changing the logical
rules—it forces a system that follows the superposition rules of the 'motive force world'
(containing interference) to degenerate into a system that follows the superposition rules of the
'isolation world' (without interference). This once again shows that the fundamental difference
between quantum mechanics and classical physics lies not in specific matter or forces, but in the
fundamentally different logical rules they follow, which are dominated by different no form
actions.

(5.4) Summary:

Before the measurement (isolation action) occurs, for a quantum system in the 'motive force
world', its internal different possibilities (represented by the elements of the basis set) are not
completely independent. They carry out an intrinsic, non-isolated interaction through their
respective phases (the embodiment of the evolution of motive force). The interference term is
precisely the mathematical expression of this phase-based interaction in the final manifestation
of probability.

When the measurement occurs, a powerful 'isolation action' is applied, and this intrinsic,
phase-based dynamic correlation is severed. The different possibilities are forcibly separated
(collapsed), the interference term therefore disappears, and the system degenerates into a world
of isolation that only follows the classical rules of probability addition, thereby presenting in our
measurement results an 'either/or', determinate, particle-like behavior.

Therefore, the interference term is direct evidence of the intrinsic logic of the 'motive force



world', and is the concentrated embodiment of its 'non-isolation' and 'dynamism'. If the
coefficients were merely real numbers (i.e., having no phase), then the combination of c₁ and c₂
would have no cross-term, and the phenomenon of interference would never occur. It is precisely
the phase information eiθ carried by complex numbers that makes interference possible.

(6) Let us examine freedom in human society

Let us explore freedom. For freedom in the motive force world, what we see from the
probabilistic linear set is indeterminacy. The expression of this indeterminacy in the isolation
world is selectivity. This selectivity is the expression of probability in the isolation world; it is
expressed as choosing one from among multiple possibilities; this is selectivity. In the isolation
world, freedom is expressed as selectivity. In the quantum world, the freedom of a quantum
possesses autonomy (autonomous evolution). The autonomy of the quantum leads to coherence
among quantum states (containing an interference term). In the motive force world, freedom is
expressed as coherence. Whereas in the manifestation world, the relationship among objects no
longer has such coherence, because the manifestation world possesses transparency; there are
no obstacles. Therefore, in the manifestation world, freedom is expressed as arbitrariness.

Utilizing these three classifications of freedom, let us examine freedom in human society.

1) The freedom of selectivity: In situations where resources, opportunities, or conditions are
limited, a person is forced to make a decision from among a few or even only one choice. This is a
limited, controlled, and compelled freedom. For instance, in a slave society, a slave can only make
decisions according to the will of the slave owner; the slave's freedom has no autonomy.
However, the freedom of the slave owner (the slave owner over the slave) has a certain
autonomy and arbitrariness; this is a one-way freedom. Although this freedom is one that is
established upon the slave, it is the beginning of the appearance of autonomous freedom for
humanity. This is the progress of human society.

2) The freedom of coherence: Our freedom has acquired autonomy; we have multiple choices,
but it involves other people. The selectivity of each person is not determinate, but when multiple
people are choosing, our freedom acquires coherence, because one person's free choice will
influence another person's free choice. This freedom generates conflict or compatibility between
people, just like the interference fringes produced by the quantum double-slit experiment. This
freedom has brought a great deal of conflict and disaster to human society, but this is also the
progress of human society, because it marks the appearance of freedom for every person; every
person wants to strive for freedom. To avoid the great amount of conflict and disaster brought by
this freedom, it compels people to seek a higher form of freedom.

3) The freedom of arbitrariness: We establish equal rules, and everyone abides by these rules. In
this way, these rules are transparent to everyone. Each of us, within the scope permitted by the
rules, then has the freedom of arbitrariness. This is a high-level freedom, guaranteed by the
'transparent manifestation' of the rules (form). This freedom also allows people to generate the
concept of equality; high-level freedom and equality are inseparable.

These three freedoms constitute a developmental hierarchy from a lower level to a higher level.
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Appendix

From Equiprobability to Probability Theory: A Geometric Construction Using Voronoi Diagrams
and Topology
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Abstract

This paper presents a novel framework for probability theory, constructed from the foundational
principle of equal likelihood. We begin by demonstrating how the fundamental properties of
probability—nonnegativity, normalization, and additivity—can be derived directly from the
intuitive concept of selecting one from n equally likely objects, without presupposing the
Kolmogorov axioms. We then introduce Voronoi diagrams not as a definition of probability, but as
a powerful geometric representation of probability distributions, where cell areas correspond to
probability values. This geometric perspective reveals the abstract nature of probability: it is
independent of specific entities and can be fundamentally linked to the squared modulus of
complex coefficients, |ci|2 . By equating Voronoi cells with "phase circles" and mapping them to
Hilbert space basis vectors, we establish a topological foundation for unifying classical and
quantum probability, where quantum probability is expressed as �(|��⟩) = |��|2. This framework
is extended to continuous distributions using three-dimensional tubular structures and
incorporates conditional probability and Bayesian inference, demonstrating its versatility. Our
approach provides a unified and intuitive view of probability, with potential applications in
quantum information, random geometry, and statistical physics.

1 Introduction

Traditional probability theory is built upon the three fundamental axioms introduced by
Kolmogorov:

Non-negativity: P(A)≥0;

Normalization: P(Ω)=1;

Additivity: For mutually exclusive events, P �Ai =∑P(Ai).

Although these axioms are mathematically rigorous, they primarily describe the "properties" of
probability, and their abstract nature makes it difficult to intuitively express the essence of
probability [1]. To overcome the abstract nature of traditional probability theory, this paper



proposes an intuitive probability framework based on the concept that "the probability of

randomly selecting one from n equally likely objects is 1
n
", which is considered the most primitive

and intuitive form of probability. This form requires no complex mathematical constructs and
directly stems from the common sense of "equal likelihood", such as the equal probability in dice
rolling or lottery drawing, with a simplicity and intuitiveness that can hardly be further simplified.

In a discrete sample space Ω={ω1,ω2,…,ωn} , P({ωi})=
1
n
, which can be extended to any event

through the counting proportion of subsets. To extend this intuitiveness to the continuous case,
we derive the probability density function of the continuous uniform distribution through the
limiting process of discretization.

Imagine dividing a finite continuous region S (with measure A ) into n subregions Vi of equal

measure, each with measure A
n
, and the probability:

P(X∈Vi)=
1
n=

μ(Vi)
A

.

As n→∞ , the subregions approach infinitesimally small, and assuming a density function

fX(x)=k , the normalization condition S
​ k�  dx=k⋅A=1 yields k= 1

A
. Therefore, the density

function for the continuous uniform distribution is fX(x)=
1
A
.

By using a Voronoi diagram [2] to partition S into subregions Vi (each with measure ai=μ(Vi)),
the probability that a random point X falls into Vi is:

P(X∈Vi)=
Vi

​
fX� (x) dx=

ai
A
.

This expression directly links probability to the "proportion of the subregion’s measure to the
total measure", redefining probability as an "area proportion" — a concept that is easy to
visualize. In this way, we establish probability theory on the most intuitive foundation: "the

probability of randomly selecting one from n objects is 1
n
".

To enhance the framework’s universality, we extend it to continuous probability distributions
using three-dimensional tubular structures, where cross-sectional phase circles represent
probability density [4], and implement dynamic probability updates through conditional
probability and Bayesian inference [5]. Unlike traditional geometric probability, which focuses on
specific spatial distributions, this framework unifies discrete, continuous, and quantum
probabilities through Voronoi diagrams and tubular structures, offering a universal
geometric-topological perspective. Through theoretical derivation, geometric modeling, and
specific applications, this paper demonstrates how this framework provides an intuitive and
universal probability modeling tool for fields such as quantum information processing, random



geometry, and statistical physics.

2 Geometric Foundation of Voronoi Diagrams

2.1 Definition of Voronoi Diagrams

A Voronoi diagram is a spatial partitioning method based on seed points [2]. Given a
two-dimensional region A⊂ℝ2 with normalized area μ(A)≡1 , and a set of seed points
p1,p2,…,pn ⊂A, the Voronoi diagram divides A into n cells V1,V2,…,Vn :

Vi= x∈A∣d(x,pi)≤d(x,pj),∀j≠i ,

where d is the Euclidean distance, defining proximity in ℝ2 . The seed points pi can be chosen

randomly or optimized based on the problem. Each cell has an area ai= Vi
​ d� x dy, satisfying:

i=1

n

ai� =1.

2.2 Preliminary Probability Definition

Consider a random variable X∼Uniform(A), uniformly distributed over A. The probability that X
falls into Vi is:

P(X∈Vi)=
μ(Vi)
μ(A)

=ai.

This definition satisfies the basic properties of probability:

Non-negativity: ai≥0,

Normalization: i=1
n ai∑ =1,

Additivity: For disjoint Vk and Vm, P(X∈Vk∪Vm)=ak+am.

The probability P(Vi)=ai is independent of the shape of Vi , relying solely on its measure ai .
This illustrates the abstract nature of probability, laying the groundwork for introducing complex
coefficients.

3 Introduction of Topology

3.1 Topologizing Voronoi Diagrams

We treat A as a two-dimensional topological manifold equipped with the standard Euclidean
topology τ , i.e., (A,τ) . The Voronoi cells Vi are closed subsets with open interiors, forming a
finite cover of A.

To bridge classical and quantum probability, we introduce a Hilbert space H=ℂn , whose
orthonormal basis vectors e1 , e2 ,…, en correspond one-to-one with V1,V2,…,Vn . This
correspondence suggests that probability can transcend specific geometric or physical forms,
unifying under an abstract mathematical structure.

3.2 Measure and Probability



On (A,τ), we employ the Borel measure μ, generated by the Borel σ-algebra from τ. For each Vi,
we have:

μ(Vi)=ai, μ(A)=
i=1

n

μ� (Vi)=1.

The probability is defined as:

P(Vi)=μ(Vi)=ai.

The Borel measure is suitable for continuous spaces. For instance, if A is the unit disk with
uniformly distributed seed points, μ(Vi)=ai directly reflects the geometric partitioning.

3.3 Shape Invariance and Measure Invariance

The probability P(Vi)=ai depends only on the measure μ(Vi) , not on the shape. Define a

measure-preserving homeomorphism f:A→A′, satisfying μ(f−1(E))=μ′(E) for any measurable set
E. Then:

μ′(f(Vi))=μ(Vi)=ai.

For example, Vi can be transformed into a circle Ci with area ai via a measure-preserving
homeomorphism, maintaining the probability ai . This demonstrates that probability is
independent of specific geometric forms, relying solely on the measure, which justifies the use of
complex coefficients.

4 Introduction of Complex Coefficients and Phase Circles

4.1 From Geometric Measure to Complex Coefficients

Since P(Vi)=ai is shape-independent, we equate Vi to a circle Ci with area ai . Define the
system state as:

C=
i=1

n

ci� Vi,

where the complex coefficients are:

ci=rieiθi , ri= ai, θi∈[0,2π).

Thus:

ci 2=ri2=ai.

The probability is:

P(Vi)= ci 2=ai.

The normalization condition holds:



i=1

n

ci 2� =
i=1

n

ai� =1.

This indicates that the essence of probability is independent of specific entities (e.g., the shape of
Vi ), determined solely by the squared modulus of the complex coefficients ci 2 . In the Hilbert
space H, the quantum state is defined as:

|ψ⟩=
i=1

n

ci� ei .

The projection probability is:

P ei = ei∣ψ 2= ci 2=ai.

Therefore:

P(Vi)=P ei = ci 2=ai.

4.2 Geometry and Probability of Phase Circles

Before delving into the geometric properties of phase circles, it is crucial to highlight a natural
correspondence that underpins our framework: each Hilbert space basis vector ei , associated
with a complex coefficient ci=rieiθi , directly corresponds to a phase circle Vi with radius
ri= ai, where ai=μ(Vi) is the measure of the Voronoi cell. This correspondence is not merely a
mathematical convenience but a profound reflection of the abstract nature of probability.
Mathematically, the modulus ri= ai determines the probability P(Vi)= ci 2=ai , aligning the
geometric area of Vi with the quantum probability of ei . This natural correspondence ensures
that each Vi serves as a geometric manifestation of ei , unifying the spatial partitioning of
Voronoi diagrams with the probabilistic structure of quantum states. Each Vi is equivalent to a
circle Ci with area ai. If Ci has radius ri′, then:

π(ri′)
2=ai, ri′=

ai
π
.

To unify with quantum probability, we define:

ci= aieiθi ,

such that:

ci 2=ai.

This explains the universal form of probability: any probability P(Vi)=ai can be expressed as
ci 2 , since ai naturally defines the modulus of the probability amplitude. This form is
consistent with the quantum mechanical rule of amplitude squaring.

4.3 Topological Interpretation of Phase Circles

The phase θi forms the unit circle S1 , corresponding to the fiber bundle E=A×S1 , with base
space A and fiber S1 . The projection π:E→A maps (x,eiθ) to x∈A . Each Vi×S1 captures the



dynamic evolution of ci= aieiθi , providing a topological foundation for interference effects in
quantum probability (e.g., phase differences in double-slit experiments).

4.4 Continuous Probability Distributions via Three-Dimensional Tubular Structures

To extend our framework to continuous probability distributions, we propose a
three-dimensional geometric model: a solid tubular structure T⊂ℝ3 , with a central axis
γ(s):[0,1]→ℝ3 parameterized by s∈[0,1]. The axis γ(s) can be a straight line, a curve, or even a
more complex path, depending on the application. At each point γ(s) , the cross-section is a
phase circle with area a(s)=πr(s)2 , where r(s) is the radius, representing the local probability
density P(s)=a(s). The volume of the tubular structure is normalized:

μ(T)=
0

1
a� (s) ds=1.

We define a complex-valued function c(s)= a(s)eiθ(s) , where θ(s)∈[0,2π) is the phase, such
that the probability density is:

P(s)=|c(s)|2=a(s).

The tubular structure forms a fiber bundle E=T×S1 , with base space T and fiber S1 , capturing
the phase dynamics essential for quantum probability.

Example 1: Uniform Distribution For a straight cylindrical tube where γ(s) is a straight line and
a(s)=πr02=constant , the probability density is uniform: P(s)=a(s)=πr02 , with

0
1π� r02  ds=πr02⋅1=1, implying r0=

1
π
.

Example 2: Gaussian Distribution For a tubular structure where the cross-sectional area follows a

Gaussian profile, e.g., a(s)= 1
2πσ

e−
(s−μ)2

2σ2 , the probability density P(s)=a(s) represents a

Gaussian distribution with mean μ and variance σ2. The normalization −∞
∞ a� (s) ds=1 holds for

s∈ℝ, demonstrating the framework’s flexibility in modeling continuous distributions. For practical
purposes, we can restrict s to a finite interval and adjust the normalization accordingly.

This model aligns with quantum mechanics, where ψ(s)=c(s) acts as a wave function, and
P(s)=|ψ(s)|2 follows the Born rule. The extension to continuous distributions via tubular
structures not only preserves the geometric and topological essence of our framework but also
provides a natural representation for probability flows in statistical physics or quantum field
theory.

5 Unification of Classical and Quantum Probability

5.1 Interpretation of Classical Probability

Classical probability is based on geometric measures but is fundamentally determined by
complex coefficients. For example, in a non-uniform distribution:

Let n=2, a1=0.2, a2=0.8.



Define ci= aieiθi, then:

P(V1)= c1 2=0.2, P(V2)= c2 2=0.8.

The state is:

C= 0.2eiθ1V1+ 0.8eiθ2V2.

The phases θi do not affect the classical probability, and:

P(V1)+P(V2)=0.2+0.8=1.

This shows that classical probability P(Vi)=ai can be expressed through ci 2 , independent of
specific geometry.

5.2 Interpretation of Quantum Probability

In quantum mechanics, ei corresponds to Vi. For the state:

|ψ⟩=
i=1

n

ci� ei , ci= aieiθi,

the probability is:

P ei = ci 2=ai.

For instance, in a spin-1/2 system:

e1 =|↑⟩, e2 =|↓⟩.

Let a1=0.5, a2=0.5, then:

|ψ⟩= 0.5eiθ1|↑⟩+ 0.5eiθ2|↓⟩.

Probabilities:

P(↑)=0.5, P(↓)=0.5.

The phase difference θ1−θ2 influences interference patterns in experiments, reflecting
quantum characteristics.

5.3 Linear Combination and Phase Circle Correspondence

To further elucidate the unification of classical and quantum probability, we observe that the
probability framework can be generalized through linear combinations of complex coefficients,
where phase circles Vi serve as universal representatives for both quantum eigenstates and
classical events. Specifically:

For a quantum state |ψ⟩=∑ci|ei⟩ , each basis vector |ei⟩ corresponds to a Voronoi cell Vi ,
interpreted as a phase circle with area ai=μ(Vi). The system state can be expressed as V=∑ciVi,
where ci= aieiθi. By comparing the forms |ψ⟩=∑ci|ei⟩ and V=∑ciVi, we conclude that quantum
probability P(|ei⟩)=|ci|2=ai is independent of the specific eigenstate |ei⟩ , depending solely on
the complex coefficient ci . Thus, the phase circle Vi effectively replaces |ei⟩ , with the
probability of |ei⟩ equating to that of Vi.



Similarly, any classical probability distribution A={A1,A2,…,An} , where ai is the probability of
event Ai , can be expressed as a linear combination A=∑ciAi , with ci=rieiθi , ri= ai , and
|ci|2=ai . Since the probabilities satisfy non-negativity and normalization (∑ai=1), each event Ai
corresponds to a phase circle Vi with area ai . The system state A=∑ciAi mirrors V=∑ciVi ,
indicating that classical probability P(Ai)=ai=|ci|2 is independent of the specific event Ai ,
relying only on the complex coefficient ci . Hence, the phase circle Vi can replace Ai , with
P(Ai)=P(Vi).

This correspondence reveals that any probability—classical or quantum—can be expressed as a
linear combination A=∑ciAi , with a corresponding phase circle form V=∑ciVi . The probability
P(Ai)=|ci|2 is thus abstracted from the specific nature of Ai (whether an eigenstate or event),
determined solely by the squared modulus of the complex coefficient. On the other hand,
V=∑ciVi represents a probability distribution structure. Consequently, there is a one-to-one
correspondence between the probability distribution structures represented by all V=∑ciVi and
those represented by all A=∑ciAi , based on the probability distribution structure itself.
Consequently, the probability of any event or eigenstate is equivalent to the probability of its
corresponding phase circle, unifying the mathematical structure of probability across both
domains. This abstraction aligns with the framework’s emphasis on the shape invariance of
probability and supports the topological interpretation of phase circles as universal carriers of
probabilistic information.

5.4 Conditional Probability in the Geometric-Topological Framework

Conditional probability extends our framework by restricting the probability measure to a subset
of the base space or Hilbert space.

Classical Conditional Probability: Consider a subset B⊂A , with measure μ(B)>0 . For any event
Vi, the conditional probability given B is:

P(Vi|B)=
μ(Vi∩B)
μ(B)

.

If Vi⊆B , then μ(Vi∩B)=ai , so P(Vi|B)=
ai
μ(B)

. More generally, if Vi∩B≠∅ , μ(Vi∩B) reflects the

overlap. Define new complex coefficients:

ci′=
μ(Vi∩B)
μ(B)

eiθi , P(Vi|B)=|ci′|
2.

Example: Let A be divided into four Voronoi cells V1,V2,V3,V4 , with
a1=0.2,a2=0.3,a3=0.3,a4=0.2. Let B=V1∪V2, so μ(B)=0.5. For event A=V2∪V3, since A∩B=V2,
μ(A∩B)=0.3, thus:

P(A|B)=
0.3
0.5

=0.6.

For V2⊆B, P(V2|B)=
0.3
0.5
=0.6, with c2′= 0.6eiθ2.



Quantum Conditional Probability: In Hilbert space ℋ , event B corresponds to projection onto
subspace ℋB=span{|ej⟩}j∈J. For state |ψ⟩=∑ci|ei⟩, the conditional probability is:

P(|ei⟩|B)=
|ci|2

j∈J
​ |∑ cj|2

=
ai

j∈J
​ aj∑

, i∈J.

The new coefficients are ci′=
ci

j∈J
​ aj∑

. For a spin-1/2 system with |ψ⟩= 0.7eiθ1|↑⟩+ 0.3eiθ2|↓⟩ ,

and B=|↑⟩⟨↑|, we have P(|↑⟩|B)=1, c1′=e
iθ1.

Continuous Case: For a tubular structure T , conditional probability restricts the measure to a
subregion, e.g., s∈[s1,s2]. The conditional probability density is:

P(s|B)=
a(s)

s1
s2 a� (s′) ds′

, c′(s)=
a(s)

s1
s2 a� (s′) ds′

eiθ(s).

Example: For a uniform tubular structure with a(s)=1 over s∈[0,1] , and B=[0.2,0.8] , the
conditional density is:

P(s|B)=
1

0.2
0.8 1�  ds′

=
1
0.6

, s∈[0.2,0.8].

Thus, c′(s)= 1
0.6
eiθ(s)≈1.291eiθ(s), and P(s|B)=|c′(s)|2= 1

0.6
.

5.5 Bayesian Inference in the Geometric-Topological Framework

Bayesian inference extends our framework by updating probabilities based on observations,
expressed through geometric rescaling and complex coefficients.

Classical Bayesian Inference: Consider hypotheses Hi corresponding to Voronoi cells Vi , with
prior probabilities P(Hi)=ai=|ci|2 . For an observation D, the likelihood P(D|Hi) can be defined

based on the specific model. For instance, if D is a subset of A , P(D|Hi)=
μ(Vi∩D)

ai
. The posterior

probability is:

P(Hi|D)=
P(D|Hi)P(Hi)

P(D)
=
μ(Vi∩D)
μ(D)

=ai′,

with P(D)=μ(D) , and new coefficients ci′= ai′e
iθi . Example: With V1,V2,V3 ,

a1=0.4,a2=0.3,a3=0.3 , let D have μ(D)=0.5 , μ(V1∩D)=0.2 , μ(V2∩D)=0.2 , μ(V3∩D)=0.1 .
Then:

P(H1|D)=
0.2
0.5

=0.4, P(H2|D)=0.4, P(H3|D)=0.2.

Quantum Bayesian Inference: For state |ψ⟩=∑ci|ei⟩, observation D is a projection onto subspace
ℋD=span{|ej⟩}j∈J. The posterior probability is:



P(Hi|D)=
ai

j∈J
​ aj∑

, i∈J,

with coefficients ci′=
ai

j∈J
​ aj∑

eiθi.

Continuous Case: In a tubular structure T, the prior density is P(s)=a(s) . Given observation D,
the likelihood P(D|s)=f(s,D), and the posterior density is:

P(s|D)=
f(s,D)a(s)

0
1 f� (s′,D)a(s′) ds′

,

with coefficients c′(s)= f(s,D)a(s)

0
1
f� (s′,D)a(s′) ds′

eiθ(s) . Example: For a uniform tubular structure with

a(s)=1, suppose D is observed at s=0.5, with likelihood f(s,D)= 1
2πσ

e−
(s−0.5)2

2σ2 . The posterior is:

P(s|D)=
e−

(s−0.5)2

2σ2

0
1 e−

(s′−0.5)2

2σ2� ds′
,

which approximates a Gaussian centered at s=0.5, truncated to [0,1].

6 Conclusion

This paper constructs a probability theory framework from the principle of equal likelihood, using
Voronoi diagrams and topology to reveal the abstract essence of probability. Key contributions
include:

Defining Vi ’s probability as the area ratio ai , introducing complex coefficients ci= aieiθi via
phase circle equivalence, such that P(Vi)=|ci|2.

Extending to continuous distributions using three-dimensional tubular structures, where
cross-sectional phase circles represent probability density.

Incorporating conditional probability and Bayesian inference, enabling dynamic updates within
the geometric-topological structure.

Providing a geometric-topological interpretation for the Born rule [3], unifying classical and
quantum probability through linear combinations and phase circle correspondence.

The incorporation of continuous distributions, conditional probability, and Bayesian inference
validates the framework’s universality, potentially positioning it as a versatile alternative to
traditional probability theory in geometric and quantum contexts. Future research may explore
topological properties of higher-dimensional Voronoi diagrams, computational optimizations for
tubular structures, and applications in quantum state reconstruction, complex system analysis,
and cross-disciplinary probability modeling.
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